Lifelong Learning
Programme

Unit title	Sequences and Limits
Topic	Formula Iteration
Name and email address of person submitting unit	Christine.Farnsworth@ @underland.ac.uk
Aims of Unit	To examine the behaviour of number sequences formed using an iteractive procedure and to generalise and justify the results obtained.
Indicative content	Using either a calculator, spreadsheet or LOGO software, students will examine the behaviour of a flow chart sequence i.e. input $1 \rightarrow$ divide by $2 \rightarrow$ subtract 3 $\rightarrow \rightarrow$ write down the next term in the sequence \rightarrow return to divide by $2 \ldots$ Students will then examine the effect of changing numbers within the flowchart sequence.
Resources needed	Calculators/computer software (spreadsheets or LOGO)
Teachers notes	Students will be encouraged to prove the results found.

Sequences and Limits

The number sequence
2.5
4.25
5.125
5.5625 \qquad
can be generated from the following rule:-

$$
x_{i+1}=\frac{x_{i}}{2}-3 \quad \text { where } x_{1}=1
$$

Use a calculator or a spreadsheet or use a LOGO procedure to determine the first 20 terms of the sequence. Describe the behaviour of the sequence.

Investigate other sequences generated by the rule:
$x_{i+1}=\underline{x}_{i}-m \quad$ where $x_{1}=a$ and a, m and $n \in \mathrm{R}$
What happens to these sequences when i becomes large?
What general statements can be made concerning the rule and the number sequences generated by the rule? Try to justify any general rules that you find.

